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Goal and Approaches

• Building increasingly complex networked 
embedded systems from components 
– Naïve “plug-and-play” approach does not work in 

embedded systems (neither in larger non-
embedded systems)

– Model-based software design focuses on the 
formal representation, composition, analysis and 
manipulation of models during the design 
process.

• Approaches with differences in focus and 
details

– MDA: Model Driven Architecture 
– MDD: Model-Driven Design
– MDE: Model-Driven Engineering 
– MIC: Model-Integrated Computing



Model-Integrated Computing
Approach (ISIS-VU)

doTransition (fsm as FSM, s as State, t 
as Transition) =
require s.active
step exitState (s)
step if t.outputEvent <> null then 

emitEvent (fsm, t.outputEvent)
step activateState (fsm, t.dst)

Semantic Foundation
Libraries

Domain-Specific        
Environments

Metaprogrammable
Tools, Environments   

Modeling Domain Specific Design Flows:
Examples in MIC:

• ECSL - Automotive
• ESML - Avionics
• SPML - Signal Processing
• CAPE/eLMS – Learning Technology
• AADL….

Metamodeling and Metaprogrammable Tools:
(mature or in maturation program)

• GME (Generic Model Editor)
• GReAT (Model Transformation)
• OTIF (Tool Integration Framework)
• UDM (Universal Data Model)
• DESERT (Design Space Exploration) 

Modeling Semantics (work in progress):
• Semantic “Units”
• Semantic Anchoring



Metamodeling Layer Objectives 

Semantic Domain:   
Set-Valued

Domain models
Interchange Formats

Abstract Syntax         
Meta-models

MC

MS

interface Event
structure ModelEvent
implements Event
case ModelEvent1

Structural Semantics

• Metamodeling
• Model Data Management 
• Model Transformation
• Tool Integration



Metamodeling and Domain Specific 
Modeling Languages

Domain Specific Modeling Language (DSML)

Semantic
Domain

S

Abstract
Syntax

A

Concrete
Syntax

C
Parsing

Semantic
Mapping

Concepts
Relations
Well formed-ness
rules

Mathematical 
abstraction for 
specifying the 
meaning of models

Notation for
representing models

L = < C, A, S, MS, MC>

MS

MC

• Model: precise representation 
of artifacts in a  modeling language L

• Modeling language: defined by
the notation (C), concepts/relations 
and integrity constraints (A), the
semantic domain (S) and mapping 
among these.

• Metamodel: formal (i.e. precise)
representation of the modeling 
language L using a metamodeling
language LM.



Modeling Example:
Metamodel and Models

Metamodel:
- Defines the set of 
admissible models

- “Metaprogramms” tool

Model:
- Describes states and transitions 
- Modeling tool enforces constraints



Metaprogrammable
Modeling Tool: GME

– Configuration through UML and OCL-based metamodels
– Extensible architecture through COM
– Multiple standard backend support (ODBC, XML)
– Multiple language support: C++, VB, Python, Java, C#

Decorator Decorator

GModel GMeta

CORE

MetamodelXML

Paradigm Definition

Storage Options… DB #nDB #1 XML …

UML / OCL

COM

COMCOM

XML

XML

ODBC

Constraint
ManagerBrowser

Translator(s)Add-On(s)

GME Editor

GME Architecture



Model Data Management:
The UDM Goals 

• To have a conceptual view of data/metadata 
that is independent of the storage format.

• Such a conceptual view should be based on 
standards such as UML.

• Have uniform access to data/metadata such 
that storage formats can be changed seamlessly 
at either design time or run time.

• Generate a metadata/paradigm specific API to 
access a particular class of data.



Model Data Management:
The UDM Tool Suite
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Model Transformation:
The “Workhorse” of MIC
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Relevant Use of Model Transformations:
• Building integrated models by extracting   
information from separate model    
databases

• Generating models for simulation and
analysis tools

• Defining semantics for DSML-s

MIC Model transformation technology is:
• Based on graph transformation 

semantics
• Model transformations are specified 
using metamodels and the code is 
automatically generated from the 
models.



Model Transformation:
The GReAT Tool Suite

 
MetaModel of Source

 
Source Models 

Meta-Programmable 
Modeling Tool 
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Tools: UMT Language, GRE (engine), C/G, GR-DEBUGTools: UMT Language, GRE (engine), C/G, GR-DEBUG

GME



Open Tool Integration 
Framework: OTIF

 

BACKPLANE 
REGISTRATION/NOTIFICATION/TRANSFER SERVICES 
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Protocol 
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Karsai, ISIS-Vanderbilt

• Share models using Publish/Subscribe Metaphor
• Status:

– Completed, tested in several tool chains
– Protocols in OMG/CORBA
– CORBA as a transport layer
– Integration with ECLIPSE is in progress

• Share models using Publish/Subscribe Metaphor
• Status:

– Completed, tested in several tool chains
– Protocols in OMG/CORBA
– CORBA as a transport layer
– Integration with ECLIPSE is in progress

RFP is Discussed at
MIC PSIG
OMG



Integrated MIC Tool Suite

GME

UDM

GReAT

Best of Breed 

• Modeling Tools
• Simulators
• Verifiers
• Model Checkers

Meta
Models

Open Tool Integration
Framework

Model Data 
Management

Modeling

Design Space 
Exploration

OTIF
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Model Transformation ESCHER Quality Controlled Repository:
http://escher.isis.vanderbilt.edu



Static Architectures

Abstract Syntax: Meta-Models 

Common Semantic Domain

Domain Models and Tool Interchange Formats
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Abstract Syntax: Meta-Models 
Common Semantic Domain

Domain Models and Tool Interchange Formats

AIRES

RISM 
ESML

ESML
CFGL

ESML
AIF

Mission Control Platform Tool Chain

BoldStroke/
PRISM CFG

ESML
GME

Rational
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Abstract Syntax and Transformations: Meta-Models 

PRISM
Meta-Model

ECSL-DP 
Meta-Model

AIRES
Meta-Model

CFG
Meta-Model

PRISM
ESML

ESML-
CFG

ESML
AIF

• Models capture invariants in the
system

• Invariants are defined on  different
levels (Models, Metamodels)

• Models are the basis for analysis and
system integration/generation



Dynamic Architectures I:
Service Models

Task Models

Service Models

Platform Models

• Heterogeneous MoC-s
• Describe mode–dependent service use
• Dynamic, data-driven instantiation

of instances
• Migration across platform nodes

• Heterogeneous MoC-s
• Dynamic binding to Task Model instances
• Platform-dependent instantiation and

replication of services

• Distributed
• Dynamic, changing interconnections
• Error-prone communication
• Changing configurations

How to characterize this system?
How to bind its behavior?



Service-Oriented Architecture for 
Sensor Networks

• Target is an entity (e.g. 
human) being sensed and 
serviced

• Target Object: 
Representation of the target 
that drives the application
– A finite state machine with 

different modes
– A task graph for each mode 

capturing the desired 
processing 

– The state of the target 
(distinct from modes) 
including location, motion, etc.

• A Target Object can 
– Migrate from one sensor node 

to another
– Switch modes based on sensor 

information

In collaboration with Xenofon Koutsoukos, Vanderbilt and
Wayne Wolf, Princeton

state

Target Object

Scheduler/Allocator

Target

Local 
Scheduler

Local 
Scheduler

Local 
Scheduler

Local 
Scheduler



Application and Middleware 
Services

• Scheduler/Allocator
– A run-time system 

dynamically binds tasks 
to application services

– Using an application 
service requires only its 
name and interfaces

• The scheduler/allocator
employs middleware 
services
– Distributed discovery 

service
– Binding service
– Data distribution service

state

Target Object

Scheduler/Allocator

Target

Local 
Scheduler

Local 
Scheduler

Local 
Scheduler

Local 
Scheduler



Scheduler/Allocator

• Distributed discovery 
service
– Query neighboring 

nodes’ service registry
– Create a local model of 

available services
• Binding service

– Local operation space 
exploration using 
constraint satisfaction

• Local scheduling of 
services at each node

Service Registry

1. Filter

2. Angle Correction

3.  Speed Tracking

4.     …

Target
object



Use of MIC Tools and Methods

• Modeling languages for
– Modes
– Task flows
– Service composition
– System architecture
– Data



DDS: Emerging Standard for 
Real-Time Data Distribution

• Data-centric interaction and coordination of 
activities

• Distributed data space; interaction through “topics”
• Dynamic interaction patterns  (Publish/Subscribe)
• The system continuously changing
• Mixed (soft, hard, or quasi) real-time interaction

requirements
– Primary concern: efficient data distribution with minimal overhead
– Requires ability to control QoS properties: predictability, 

overhead, and resources used
– Scaling is a critical issue

• Reliability and fault tolerance is required
• http://www.omg.org/technology/documents/formal/

data_distribution.htm



Dynamic Architectures II:
Sensor Networks

Local Information
Processing

Services
― Localization
― Time synchronization
― Routing 
― Coordination
― ….

Platforms

• Heterogeneous MoC-s
• Describe real-time sensor processing
• Power aware algorithms
• Produces compressed data for migrating

across platforms (possibly to base 
station)

• Complex state automata
• Tight dependence onbthephysical

properties of the platform
• “Emerging” global behavior 

• Fine-grain distributed
• Dynamic, highly uncertain interconnections
• Error-prone computation nodes
• Continuously changing configurations

How to characterize this system?
How to bind its behavior?



Example: Vanderbilt Shooter 
Localization System

Challenges:
– Severely resource constrained 

nodes 
– Very limited communication 

bandwidth
– Significant multipath effects in 

urban environment

Solution developed by an ISIS 
team between 2003-2005
(Maroti M., Simon G., Ledeczi A., Sztipanovits J.: 
Shooter Localization in Urban Terrain, Computer, 
37(8), 60-61, 2004.)

Urban environment with echo and 
no line-of-site
Rapid deployment and low cost
Multiple simultaneous shot 
resolution
Idea: Sensor network with cheap 
acoustic sensors, exploiting 
redundancy



Technical Approach

• Detect Time of Arrival (TOA) of acoustic shockwave and muzzle blast
– Application specific acoustic sensor board:

• 3 acoustic channels (only a single channel is used in final system)
• High-speed AD converters
• FPGA for signal processing: shockwave and muzzle blast detection on board

• Timestamp of shockwave and/or muzzle blast sent to Mica2 mote
• Mica2 motes route TOA data to base station
• Base station fuses data, estimates shooter position and displays result
• Middleware services:

– Localization
– Time synchronization
– Message routing
– Remote control

• Tiny OS operating system
ad-hoc networking
(Ledeczi et.al.”Countersniper System 
for Urban Warfare”, 
ACM TOSN, 2(1), 153-177, 2005.)



System Architecture
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Unique Challenges: Latency
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Latency < 2 sec

Network



Unique Challenges: Latency
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Unique Challenges: Time Synch
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Real-life Experiments

Sep 2003: Baseline system
Apr 2004: Multishot resolution

60 motes covered a 100x40m area
Network diameter: ~7 hops
Used blanks and Short Range Training 
Ammunition (SRTA)
Hundreds of shots fired from ~40 
different locations
Single shooter, operating in 
semiautomatic and burst mode in 2003
Up to four shooters and up to 10 shots 
per second in 2004
Variety of shooter locations (bell 
tower, inside buildings/windows, behind 
mailbox, behind car, …) chosen to 
absorb acoustic energy, have limited 
line of sight on sensor networks
Hand placed motes on surveyed points 
(sensor localization accuracy: ~ 0.3m)

NORTH

B1
Church



Conclusions

• Network Centric Systems offer completely 
new solutions for old, very hard problems

• Model-based design and tools are 
indispensable in their design.

• Application design frequently spans 
DSP/HW/SW/Networking with complex 
interdependences

• Modeling paradigms are more complex, 
heterogeneous and model integration is
becoming a major challenge
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