
Model-based Design and Network Centric
Systems

Janos Sztipanovits
ISIS, Vanderbilt University

DATE 2006
Munich, Germany
March 6, 2006

Content

• Model Based Design and MIC
– Modeling
– Model Data Management
– Model Transformation
– Tool Integration

• Modeling in dynamic architectures
• Modeling in sensor network applications

Goal and Approaches

• Building increasingly complex networked
embedded systems from components
– Naïve “plug-and-play” approach does not work in

embedded systems (neither in larger non-
embedded systems)

– Model-based software design focuses on the
formal representation, composition, analysis and
manipulation of models during the design
process.

• Approaches with differences in focus and
details

– MDA: Model Driven Architecture
– MDD: Model-Driven Design
– MDE: Model-Driven Engineering
– MIC: Model-Integrated Computing

Model-Integrated Computing
Approach (ISIS-VU)

doTransition (fsm as FSM, s as State, t
as Transition) =
require s.active
step exitState (s)
step if t.outputEvent <> null then

emitEvent (fsm, t.outputEvent)
step activateState (fsm, t.dst)

Semantic Foundation
Libraries

Domain-Specific
Environments

Metaprogrammable
Tools, Environments

Modeling Domain Specific Design Flows:
Examples in MIC:

• ECSL - Automotive
• ESML - Avionics
• SPML - Signal Processing
• CAPE/eLMS – Learning Technology
• AADL….

Metamodeling and Metaprogrammable Tools:
(mature or in maturation program)

• GME (Generic Model Editor)
• GReAT (Model Transformation)
• OTIF (Tool Integration Framework)
• UDM (Universal Data Model)
• DESERT (Design Space Exploration)

Modeling Semantics (work in progress):
• Semantic “Units”
• Semantic Anchoring

Metamodeling Layer Objectives

Semantic Domain:
Set-Valued

Domain models
Interchange Formats

Abstract Syntax
Meta-models

MC

MS

interface Event
structure ModelEvent
implements Event
case ModelEvent1

Structural Semantics

• Metamodeling
• Model Data Management
• Model Transformation
• Tool Integration

Metamodeling and Domain Specific
Modeling Languages

Domain Specific Modeling Language (DSML)

Semantic
Domain

S

Abstract
Syntax

A

Concrete
Syntax

C
Parsing

Semantic
Mapping

Concepts
Relations
Well formed-ness
rules

Mathematical
abstraction for
specifying the
meaning of models

Notation for
representing models

L = < C, A, S, MS, MC>

MS

MC

• Model: precise representation
of artifacts in a modeling language L

• Modeling language: defined by
the notation (C), concepts/relations
and integrity constraints (A), the
semantic domain (S) and mapping
among these.

• Metamodel: formal (i.e. precise)
representation of the modeling
language L using a metamodeling
language LM.

Modeling Example:
Metamodel and Models

Metamodel:
- Defines the set of
admissible models

- “Metaprogramms” tool

Model:
- Describes states and transitions
- Modeling tool enforces constraints

Metaprogrammable
Modeling Tool: GME

– Configuration through UML and OCL-based metamodels
– Extensible architecture through COM
– Multiple standard backend support (ODBC, XML)
– Multiple language support: C++, VB, Python, Java, C#

Decorator Decorator

GModel GMeta

CORE

MetamodelXML

Paradigm Definition

Storage Options… DB #nDB #1 XML …

UML / OCL

COM

COMCOM

XML

XML

ODBC

Constraint
ManagerBrowser

Translator(s)Add-On(s)

GME Editor

GME Architecture

Model Data Management:
The UDM Goals

• To have a conceptual view of data/metadata
that is independent of the storage format.

• Such a conceptual view should be based on
standards such as UML.

• Have uniform access to data/metadata such
that storage formats can be changed seamlessly
at either design time or run time.

• Generate a metadata/paradigm specific API to
access a particular class of data.

Model Data Management:
The UDM Tool Suite

GME UML

GME/UML
Interpreter

UDM.exe
XML
(Meta)

<Uml.xsd>

.cpp .h .xsd

User Program

UDM Generated code

API Meta-
objects

XML data
file

Validates

UdmCopy

XML MEM MGA

GME

Backends

Binary
file

CORBA

Network

Generic API
OCL
Eval

Model Transformation:
The “Workhorse” of MIC

MOFADSML1 MOFADSML2MTLTDSML1,DSM2

MOF UMT MOF

M12: MOFADSML1→MOFADSML2

MDSML1,DSML2

SC

A

MC2 MS2

DSML-2CS

A

MC1 MS1

DSML-1

DSML1DM DSML2DM

Transformation
T

Rewrite
EngineInput

Models
Target
Models

Ph
ys

ic
al

 in
te

rf
ac

e

Ph
ys

ic
al

 in
te

rf
ac

e

In
pu

t
ab

st
ra

ct
 s

yn
ta

x

O
ut

pu
t

ab
st

ra
ct

 s
yn

ta
x

Input
Interface

Output InterfaceA
P
I

A
P
I

UDMUDM

GReATGReAT

Metamodel of
Input

Metamodel of
Output

Metamodel of
Transformatio

n

M
et

a-
le

ve
l:

Tr
an

sl
at

or

de
si

gn
Im

pl
em

en
ta

tio
n:

Ex

ec
ut

io
n

Relevant Use of Model Transformations:
• Building integrated models by extracting
information from separate model
databases

• Generating models for simulation and
analysis tools

• Defining semantics for DSML-s

MIC Model transformation technology is:
• Based on graph transformation

semantics
• Model transformations are specified
using metamodels and the code is
automatically generated from the
models.

Model Transformation:
The GReAT Tool Suite

MetaModel of Source

Source Models

Meta-Programmable
Modeling Tool

MetaModel of Target

MetaModel of
Domain-to-Target

Mapping

Meta-Programmable
Transformation Tool

Code Generator

(Generated)
Transformation Tool

Debugger

Target/Executable
Models

Target Platform

Meta-models

Meta-
programmable

tools

Models and
applications

Generated tool

uses uses

describes

describes

configures

creates

configures

generates GRE

DEBUG

C/G

Tools: UMT Language, GRE (engine), C/G, GR-DEBUGTools: UMT Language, GRE (engine), C/G, GR-DEBUG

GME

Open Tool Integration
Framework: OTIF

BACKPLANE
REGISTRATION/NOTIFICATION/TRANSFER SERVICES

SEMANTIC
TRANSLATOR

SEMANTIC
TRANSLATOR

TOOL

TOOL
ADAPTOR

TOOL

TOOL
ADAPTOR

TOOL

TOOL
ADAPTOR MANAGER

Standard interface/
Protocol

METADATA

Karsai, ISIS-Vanderbilt

• Share models using Publish/Subscribe Metaphor
• Status:

– Completed, tested in several tool chains
– Protocols in OMG/CORBA
– CORBA as a transport layer
– Integration with ECLIPSE is in progress

• Share models using Publish/Subscribe Metaphor
• Status:

– Completed, tested in several tool chains
– Protocols in OMG/CORBA
– CORBA as a transport layer
– Integration with ECLIPSE is in progress

RFP is Discussed at
MIC PSIG
OMG

Integrated MIC Tool Suite

GME

UDM

GReAT

Best of Breed

• Modeling Tools
• Simulators
• Verifiers
• Model Checkers

Meta
Models

Open Tool Integration
Framework

Model Data
Management

Modeling

Design Space
Exploration

OTIF

BACKPLANE
REGISTRATION/NOTIFICATION/TRANSFER SERVICES

SEMANTIC
TRANSLATOR

SEMANTIC
TRANSLATOR

TOOL

TOOL
ADAPTOR

TOOL

TOOL
ADAPTOR

TOOL

TOOL
ADAPTOR MANAGER

Standard interface/
Protocol

METADATA

DESERT
Component

Abstraction (TA)
Design Space
Modeling (MD)

Design Space
Encoding (TE)

Design Space
Pruning

Design
Decoding

Component
Reconstruction

Model Transformation ESCHER Quality Controlled Repository:
http://escher.isis.vanderbilt.edu

Static Architectures

Abstract Syntax: Meta-Models

Common Semantic Domain

Domain Models and Tool Interchange Formats

AIRES

PRISM
ESML

ESML
CFG

ESML
AIF

Mission Control Platform Tool Chain

BoldStroke/
PRISM CFG

Component
Structure

Component
InteractionThread

Models

ESML
GME

Rational
Rose

Component
Model

System
Integration

Schedulability
Analysis

Abstract Syntax: Meta-Models
Common Semantic Domain

Domain Models and Tool Interchange Formats

AIRES

RISM
ESML

ESML
CFGL

ESML
AIF

Mission Control Platform Tool Chain

BoldStroke/
PRISM CFG

ESML
GME

Rational
Rose

Abstract Syntax and Transformations: Meta-Models

PRISM
Meta-Model

ECSL-DP
Meta-Model

AIRES
Meta-Model

CFG
Meta-Model

PRISM
ESML

ESML-
CFG

ESML
AIF

• Models capture invariants in the
system

• Invariants are defined on different
levels (Models, Metamodels)

• Models are the basis for analysis and
system integration/generation

Dynamic Architectures I:
Service Models

Task Models

Service Models

Platform Models

• Heterogeneous MoC-s
• Describe mode–dependent service use
• Dynamic, data-driven instantiation

of instances
• Migration across platform nodes

• Heterogeneous MoC-s
• Dynamic binding to Task Model instances
• Platform-dependent instantiation and

replication of services

• Distributed
• Dynamic, changing interconnections
• Error-prone communication
• Changing configurations

How to characterize this system?
How to bind its behavior?

Service-Oriented Architecture for
Sensor Networks

• Target is an entity (e.g.
human) being sensed and
serviced

• Target Object:
Representation of the target
that drives the application
– A finite state machine with

different modes
– A task graph for each mode

capturing the desired
processing

– The state of the target
(distinct from modes)
including location, motion, etc.

• A Target Object can
– Migrate from one sensor node

to another
– Switch modes based on sensor

information

In collaboration with Xenofon Koutsoukos, Vanderbilt and
Wayne Wolf, Princeton

state

Target Object

Scheduler/Allocator

Target

Local
Scheduler

Local
Scheduler

Local
Scheduler

Local
Scheduler

Application and Middleware
Services

• Scheduler/Allocator
– A run-time system

dynamically binds tasks
to application services

– Using an application
service requires only its
name and interfaces

• The scheduler/allocator
employs middleware
services
– Distributed discovery

service
– Binding service
– Data distribution service

state

Target Object

Scheduler/Allocator

Target

Local
Scheduler

Local
Scheduler

Local
Scheduler

Local
Scheduler

Scheduler/Allocator

• Distributed discovery
service
– Query neighboring

nodes’ service registry
– Create a local model of

available services
• Binding service

– Local operation space
exploration using
constraint satisfaction

• Local scheduling of
services at each node

Service Registry

1. Filter

2. Angle Correction

3. Speed Tracking

4. …

Target
object

Use of MIC Tools and Methods

• Modeling languages for
– Modes
– Task flows
– Service composition
– System architecture
– Data

DDS: Emerging Standard for
Real-Time Data Distribution

• Data-centric interaction and coordination of
activities

• Distributed data space; interaction through “topics”
• Dynamic interaction patterns (Publish/Subscribe)
• The system continuously changing
• Mixed (soft, hard, or quasi) real-time interaction

requirements
– Primary concern: efficient data distribution with minimal overhead
– Requires ability to control QoS properties: predictability,

overhead, and resources used
– Scaling is a critical issue

• Reliability and fault tolerance is required
• http://www.omg.org/technology/documents/formal/

data_distribution.htm

Dynamic Architectures II:
Sensor Networks

Local Information
Processing

Services
― Localization
― Time synchronization
― Routing
― Coordination
― ….

Platforms

• Heterogeneous MoC-s
• Describe real-time sensor processing
• Power aware algorithms
• Produces compressed data for migrating

across platforms (possibly to base
station)

• Complex state automata
• Tight dependence onbthephysical

properties of the platform
• “Emerging” global behavior

• Fine-grain distributed
• Dynamic, highly uncertain interconnections
• Error-prone computation nodes
• Continuously changing configurations

How to characterize this system?
How to bind its behavior?

Example: Vanderbilt Shooter
Localization System

Challenges:
– Severely resource constrained

nodes
– Very limited communication

bandwidth
– Significant multipath effects in

urban environment

Solution developed by an ISIS
team between 2003-2005
(Maroti M., Simon G., Ledeczi A., Sztipanovits J.:
Shooter Localization in Urban Terrain, Computer,
37(8), 60-61, 2004.)

Urban environment with echo and
no line-of-site
Rapid deployment and low cost
Multiple simultaneous shot
resolution
Idea: Sensor network with cheap
acoustic sensors, exploiting
redundancy

Technical Approach

• Detect Time of Arrival (TOA) of acoustic shockwave and muzzle blast
– Application specific acoustic sensor board:

• 3 acoustic channels (only a single channel is used in final system)
• High-speed AD converters
• FPGA for signal processing: shockwave and muzzle blast detection on board

• Timestamp of shockwave and/or muzzle blast sent to Mica2 mote
• Mica2 motes route TOA data to base station
• Base station fuses data, estimates shooter position and displays result
• Middleware services:

– Localization
– Time synchronization
– Message routing
– Remote control

• Tiny OS operating system
ad-hoc networking
(Ledeczi et.al.”Countersniper System
for Urban Warfare”,
ACM TOSN, 2(1), 153-177, 2005.)

System Architecture
I2C UART

Sensorboard
Time Sync

Muzzle Blast
&

Shockwave
Detector

Remote
Control

Sensorboard
Interface

Sensorboard
Config/
Monitor

Stack
Monitor

Data
Recorder

Download
Manager

Acoustic
Event

Encoder

Time
Sync

Message
Routing

User
Interface

Message
Center

Sensor
Fusion

Plotter
Logger

Sensor
Location

Remote
Controller

MICA2 MOTESENSORBOARD BASE STATION

Unique Challenges: Latency

ADC Zero Crossing
Coder

Shock Wave
Detector

Zero Crossing
Filter

Muzzle Blast
Detector

Sensorboard
Interface

Sensorboard
Config/
Monitor

Data
Recorder

Acoustic
Event

Encoder

Time
Sync

Message
Routing

User
Interface

Message
Center

Sensor
Fusion

Sensor Boards Base
Station

Latency < 2 sec

Network

Unique Challenges: Latency

Sensorboard
Config/
Monitor

Data
Recorder

Time
Sync

Message
Routing

Message
Center

Sensor Boards Base
Station

Network

Acoustic
Event

Encoder

ADC Zero Crossing
Coder

Shock Wave
Detector

Zero Crossing
Filter

Muzzle Blast
Detector

Sensorboard
Interface

User
Interface

Sensor
Fusion

fat spanning-tree
flooding

Latency < 2 sec ?

Unique Challenges: Time Synch

ADC Zero Crossing
Coder

Shock Wave
Detector

Zero Crossing
Filter

Muzzle Blast
Detector

Sensorboard
Interface

Sensorboard
Config/
Monitor

Data
Recorder

Acoustic
Event

Encoder

Message
Routing

User
Interface

Message
Center

Sensor
Fusion

Sensor Boards Base
Station

Network

Time
Sync

Time
Sync
Time
Sync

0

5

10

15

20

25

30

35

40

45

50

0:00 0:10 0:20 0:30 0:40 0:50 1:00 1:10 1:20 1:30 1:40 1:50 2:00 2:10

Time (hh:mm)
m

ic
ro

se
co

nd
s

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

pe
rc

en
ta

ge

average error (µs)

maximum error (µs)

syncronized motes (%)

Leader offSTART Random motes offHalf off All on

Flooding Time Synchronization Protocol (FTSP)

Real-life Experiments

Sep 2003: Baseline system
Apr 2004: Multishot resolution

60 motes covered a 100x40m area
Network diameter: ~7 hops
Used blanks and Short Range Training
Ammunition (SRTA)
Hundreds of shots fired from ~40
different locations
Single shooter, operating in
semiautomatic and burst mode in 2003
Up to four shooters and up to 10 shots
per second in 2004
Variety of shooter locations (bell
tower, inside buildings/windows, behind
mailbox, behind car, …) chosen to
absorb acoustic energy, have limited
line of sight on sensor networks
Hand placed motes on surveyed points
(sensor localization accuracy: ~ 0.3m)

NORTH

B1
Church

Conclusions

• Network Centric Systems offer completely
new solutions for old, very hard problems

• Model-based design and tools are
indispensable in their design.

• Application design frequently spans
DSP/HW/SW/Networking with complex
interdependences

• Modeling paradigms are more complex,
heterogeneous and model integration is
becoming a major challenge

	Model-based Design and Network Centric Systems
	Content
	Goal and Approaches
	Model-Integrated ComputingApproach (ISIS-VU)
	Metamodeling Layer Objectives
	Metamodeling and Domain Specific Modeling Languages
	Modeling Example: Metamodel and Models
	Metaprogrammable Modeling Tool: GME
	Model Data Management:The UDM Goals
	Model Data Management:The UDM Tool Suite
	Model Transformation:The “Workhorse” of MIC
	Model Transformation:The GReAT Tool Suite
	Open Tool Integration Framework: OTIF
	Integrated MIC Tool Suite
	Static Architectures
	Dynamic Architectures I:Service Models
	Service-Oriented Architecture for Sensor Networks
	Application and Middleware Services
	Scheduler/Allocator
	Use of MIC Tools and Methods
	DDS: Emerging Standard for Real-Time Data Distribution
	Dynamic Architectures II:Sensor Networks
	Example: Vanderbilt Shooter Localization System
	Technical Approach
	System Architecture
	Unique Challenges: Latency
	Unique Challenges: Latency
	Unique Challenges: Time Synch
	Real-life Experiments
	Conclusions

