

Model-based Design and Network Centric Systems

Janos Sztipanovits ISIS, Vanderbilt University

DATE 2006 Munich, Germany March 6, 2006

- Model Based Design and MIC
 - Modeling
 - Model Data Management
 - Model Transformation
 - Tool Integration
- Modeling in dynamic architectures
- Modeling in sensor network applications

- Building increasingly complex networked embedded systems from components
 - Naïve "plug-and-play" approach does not work in embedded systems (neither in larger nonembedded systems)
 - Model-based software design focuses on the *formal representation, composition, analysis and manipulation of models* during the design process.
- Approaches with differences in focus and details
 - MDA: Model Driven Architecture
 - MDD: Model-Driven Design
 - MDE: Model-Driven Engineering
 - MIC: Model-Integrated Computing

Metamodeling Layer Objectives

- Metamodeling
- Model Data Management
- Model Transformation
- Tool Integration

Modeling and Domain Specific Modeling Languages

Domain Specific Modeling Language (DSML)

- **Model**: precise representation of artifacts in a modeling language L
- Modeling language: defined by the notation (C), concepts/relations and integrity constraints (A), the semantic domain (S) and mapping among these.
- **Metamodel:** formal (i.e. precise) representation of the modeling language L using a metamodeling language L_M.

Modeling Example: <u>Metamodel and Models</u>

Metamodel:

- Defines the set of admissible models
- "Metaprogramms" tool

Model:

- Describes states and transitions
- Modeling tool enforces constraints

Metaprogrammable <u>Modeling Tool: GME</u>

- Configuration through UML and OCL-based metamodels
- Extensible architecture through COM
- Multiple standard backend support (ODBC, XML)
- Multiple language support: C++, VB, Python, Java, C#

- To have a conceptual view of data/metadata that is independent of the storage format.
- Such a conceptual view should be based on standards such as UML.
- Have uniform access to data/metadata such that storage formats can be changed seamlessly at either design time or run time.
- Generate a metadata/paradigm specific API to access a particular class of data.

Model Data Management: The UDM Tool Suite

Model Transformation: The "Workhorse" of MIC

Relevant Use of Model Transformations:

- Building integrated models by extracting information from separate model databases
- Generating models for simulation and analysis tools
- Defining semantics for DSML-s

MIC Model transformation technology is:

- Based on graph transformation semantics
- Model transformations are specified using metamodels and the code is automatically generated from the models.

Model Transformation: The GReAT Tool Suite

Open Tool Integration Framework: OTIF

RFP is Discussed at MIC PSIG OMG

- Share models using Publish/Subscribe Metaphor
- Status:

٠

- Completed, tested in several tool chains
- Protocols in OMG/CORBA
- CORBA as a transport layer
- Integration with ECLIPSE is in progress

http://escher.isis.vanderbilt.edu

Static Architectures

- Query neighboring nodes' service registry
- Create a local model of available services
- Binding service
 - Local operation space exploration using constraint satisfaction
- Local scheduling of services at each node

Use of MIC Tools and Methods

- Data-centric interaction and coordination of activities
- Distributed data space; interaction through "topics"
- Dynamic interaction patterns (Publish/Subscribe)
- The system continuously changing
- Mixed (soft, hard, or quasi) real-time interaction requirements
 - Primary concern: efficient data distribution with minimal overhead
 - Requires ability to control QoS properties: predictability, overhead, and resources used
 - Scaling is a critical issue
- Reliability and fault tolerance is required
- http://www.omg.org/technology/documents/formal/ data_distribution.htm

itectures II:
 Heterogeneous MoC-s Describe real-time sensor processing Power aware algorithms Produces compressed data for migrating across platforms (possibly to base station)
 Complex state automata Tight dependence onbthephysical properties of the platform "Emerging" global behavior
 Fine-grain distributed Dynamic, highly uncertain interconnections Error-prone computation nodes Continuously changing configurations

Example: Vanderbilt Shooter Localization System

- → Urban environment with echo and no line-of-site
- \rightarrow Rapid deployment and low cost
- Multiple simultaneous shot resolution
- → Idea: Sensor network with cheap acoustic sensors, exploiting redundancy
- \rightarrow Challenges:
 - Severely resource constrained nodes
 - Very limited communication bandwidth
 - Significant multipath effects in urban environment
- Solution developed by an ISIS team between 2003-2005 (Maroti M., Simon G., Ledeczi A., Sztipanovits J.: Shooter Localization in Urban Terrain, Computer, 37(8), 60-61, 2004.)

• Detect Time of Arrival (TOA) of acoustic shockwave and muzzle blast

- Application specific acoustic sensor board:
 - 3 acoustic channels (only a single channel is used in final system)
 - · High-speed AD converters
 - $\boldsymbol{\cdot}$ FPGA for signal processing: shockwave and muzzle blast detection on board
- Timestamp of shockwave and/or muzzle blast sent to Mica2 mote
- Mica2 motes route TOA data to base station
- Base station fuses data, estimates shooter position and displays result
- Middleware services:
 - Localization
 - Time synchronization
 - Message routing
 - Remote control
- Tiny OS operating system ad-hoc networking

(Ledeczi et.al."Countersniper System for Urban Warfare", ACM TOSN, 2(1), 153-177, 2005.)

V

System Architecture

Unique Challenges: Latency

Unique Challenges: Latency

Unique Challenges: Time Synch

Real-life Experiments

- Sep 2003: Baseline system
- Apr 2004: Multishot resolution
- 60 motes covered a 100×40m area
- Network diameter: ~7 hops
- Used blanks and Short Range Training Ammunition (SRTA)
- Hundreds of shots fired from ~40 different locations
- Single shooter, operating in semiautomatic and burst mode in 2003
- Up to four shooters and up to 10 shots per second in 2004
- Variety of shooter locations (bell tower, inside buildings/windows, behind mailbox, behind car, ...) chosen to absorb acoustic energy, have limited line of sight on sensor networks
- Hand placed motes on surveyed points (sensor localization accuracy: ~ 0.3m)

- Network Centric Systems offer completely new solutions for old, very hard problems
- Model-based design and tools are indispensable in their design.
- Application design frequently spans DSP/HW/SW/Networking with complex interdependences
- Modeling paradigms are more complex, heterogeneous and model integration is becoming a major challenge